skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cecchin, Alekos"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Forcing finite state mean field games by a relevant form of common noise is a subtle issue, which has been addressed only recently. Among others, one possible way is to subject the simplex valued dynamics of an equilibrium by a so-called Wright–Fisher noise, very much in the spirit of stochastic models in population genetics. A key feature is that such a random forcing preserves the structure of the simplex, which is nothing but, in this setting, the probability space over the state space of the game. The purpose of this article is, hence, to elucidate the finite-player version and, accordingly, prove that N-player equilibria indeed converge toward the solution of such a kind of Wright–Fisher mean field game. Whereas part of the analysis is made easier by the fact that the corresponding master equation has already been proved to be uniquely solvable under the presence of the common noise, it becomes however more subtle than in the standard setting because the mean field interaction between the players now occurs through a weighted empirical measure. In other words, each player carries its own weight, which, hence, may differ from [Formula: see text] and which, most of all, evolves with the common noise. 
    more » « less
  2. null (Ed.)